Computational Screening

We have developed computational tools to understand the electrochemical properties of molecules and materials that can be used for energy conversion technologies. Our computational cluster houses a total of 84 physical cores, which allows us to run electronic structure calculations efficiently. DFT is the method of choice and, when combined with appropriate functionals can be highly efficient in the calculation of ground state properties of electroactive compounds.

Recently we have used a variety computational methods to rapidly screen new molecules for their redox potentials. These calculations have allowed us to focus on synthesis and characterization of only the most promising materials for energy storage applications, such as batteries and capacitors. Different methods allow us to calculate a variety of relevant properties. For example, to determine stability we use methods such as Nuclear Independent Chemical Shift (NICS), and Fukui indices. For excited states we have used Time Dependant DFT (TDDFT) or Zerner’s Intermediate Neglect of Differential Overlap (ZINDO). For Raman or IR spectra we have calculated force constants using computational tools available in the Gaussian package. By using these tools, we can understand better our experimental results and predict a molecule’s performance in electrochemical systems. Included below are several references where our capabilities have been used to good effect.

Citations

  1. Henderson, J. C.; Kiya, Y.; Hutchison, G. R.; Abruña, H. D. J. Phys. Chem. C, 2008, 112, 3989
  2. Rodriguez-Calero, G. G.; Lowe M. A.; Kiya, Y.; Abruña, H. D. J. Phys. Chem. C 2010, 114, 6169
  3. Burkhardt, S. E.; Rodriguez-Calero, G. G.; Lowe M. A.; Kiya, Y.; Hennig, R. G.; Abruña, H. D. J. Phys. Chem. C, 2010, 114 (39), 16776
  4. Burkhardt, S. E.; Conte, S.; Rodriguez-Calero, G. G.; Lowe M. A.; Qian, H; Zhou, W.; Gao, J.; Hennig, R. G.; Abruña, H. D. J. Mater. Chem., 2011, 21, 9553
  5. Burkhardt, S. E.; Lowe M. A.; Conte, S.; Zhou, W.; Qian, H.; Rodriguez-Calero, G. G.; Gao, J.; Hennig, R. G.; Abruña, H. D. Energy. Environ. Sci. 2012, 5, 7176.
  6. Burkhardt S. E.; Bois, J.; Tarascon, J.; Hennig, R. G.; Abruña, H. D. Chem. Mater. 2013, 25, 132
  7. Hernandez-Burgos, K.; Zhou, W.; Burkhardt, S. E.; Abruña, H. D. J. Am. Chem Soc. 2013 (Accepted)
  8. Zhou, W.; Hernandez-Burgos, K.; Burkhardt, S. E.; Qian, H.; Abruña, H. D. J. Phys. Chem. C. . 2013 117 (12), 6022.